A Classical Result on Maximal Valuation Domains Revisited

نویسندگان

  • PAOLO ZANARDO
  • Johnny A. Johnson
چکیده

We prove that a non linearly compact valuation domain R admits a proper immediate extension S. This is the main point of Kaplansky’s classical result that a valuation domain is linearly compact if and only if it is maximal. In fact, Kaplansky’s original proof, as well as later versions of it, do not show that R and S have the same residue field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost valuation rings

The aim of this paper is to generalize the‎ ‎notion of almost valuation domains to arbitrary commutative‎ ‎rings‎. ‎Also‎, ‎we consider relations between almost valuation rings ‎and pseudo-almost valuation rings‎. ‎We prove that the class of‎ ‎almost valuation rings is properly contained in the class of‎ ‎pseudo-almost valuation rings‎. ‎Among the properties of almost‎ ‎valuation rings‎, ‎we sh...

متن کامل

Injective Modules and Fp-injective Modules over Valuation Rings

It is shown that each almost maximal valuation ring R, such that every indecomposable injective R-module is countably generated, satisfies the following condition (C): each fp-injective R-module is locally injective. The converse holds if R is a domain. Moreover, it is proved that a valuation ring R that satisfies this condition (C) is almost maximal. The converse holds if Spec(R) is countable....

متن کامل

Maximal prehomogeneous subspaces on classical groups

Suppose $G$ is a split connected‎ ‎reductive orthogonal or symplectic group over an infinite field‎ ‎$F,$ $P=MN$ is a maximal parabolic subgroup of $G,$ $frak{n}$ is‎ ‎the Lie algebra of the unipotent radical $N.$ Under the adjoint‎ ‎action of its stabilizer in $M,$ every maximal prehomogeneous‎ ‎subspaces of $frak{n}$ is determined‎.

متن کامل

Valuation domains whose products of free modules are separable

It is proved that if R is a valuation domain with maximal ideal P and if RL is countably generated for each prime ideal L, then R R is separable if and only RJ is maximal, where J = ∩n∈NP . When R is a valuation domain satisfying one of the following two conditions: (1) R is almost maximal and its quotient field Q is countably generated (2) R is archimedean Franzen proved in [2] that R is separ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001